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The importance of thermal siresses and strains induced in laser processing

with focused Gaussian beams
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(Received 11 April 1988; accepted for publication 9 August 1988}

The thermoelastic equations are solved for laser heating of a semi-infinite elastic medium by a
focused TEM,, Gaussian beam. Single integral expressions are derived for stresses and strains,
which are analytically evaluated on axis at the surface and far from the laser-heated region (for
a laser spot sized absorption depth), and numerically evaluated for the example of laser
heating of a silicon substrate. This analysis is extended to the case of laser heating of thin films
on substrates. Use of these stress and strain profiles suggests that dislocations may form at the

surface during high-temperature laser processing of silicon at scan speeds typically used in
direct laser writing. Also the elastic strains induced during laser heating shift phonon
frequencies from their thermal equilibrium values, thereby complicating the use of Raman
scattering as an optical probe of temperature, This is shown to be particularly significant for
laser heating of silicon thin films on fused silica substrates and not very important for laser
processing of silicon substrates or silicon thin films on sapphire.

i INTRODUCTION

In direct laser writing, focused beams are used to modify
surfaces by chemical processes that lead to deposition, etch-
ing, and doping.' This is often accomplished by locally heat-
ing the substrate using a focused laser with a Gaussian pro-
file in the presence of a suitable reactant. During the course
of this surface modification, large thermoelastic stresses and
strains may be induced, which can produce defects and leave
behind built-in stresses in and near the modified area. These
unintended effects can lead to serious consequences in per-
formance, especially in microelectronics, where many im-
portant applications of laser writing have been investigated.
Similar problems may also arise in annealing and recrystalli-
zation using focused lasers and electron beams. The impor-
tance of these stresses and strains induced during laser writ-
ing are addressed here for the first time. Single integral
expressions for stresses and strains are derived for model
systems using the coupled laser heating and thermoelastic
equations. The consequences of these sclutions are then ana-
Iyzed using laser processing of a crystalline silicon substrate
as an example.

Stresses induced in electron beam annealing of silicon by
a scanning line focus have been analyzed by Correra and
Bentini,? who later extended their study to uniform heating
of the substrate.” They also determined the pattern of dislo-
cation formation during annealing from their calculated
stress and strain distributions. A similar treatment of defect
production is performed here, using the stress profiles in-
duced during laser heating by 2 Gaussian beam.

Large elastic strains can dramatically affect the accura-
cy of temperature measurements made by optical probing
during laser processing. The influence of strain in the Raman
microprobe analysis of substrate heating by focused laser
beams is investigated in this study as another example of a
thermoelastic effect which is important in laser processing.
Jellison and Wood,* and Compaan, Lee, and Trott® have
found that strain can be an important factor in the Raman
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measurement of temperature during pulsed laser annealing
by large uniform-intensity beams.

Lax®’ has obtained the solution for the temperature
profile induced by steady-state heating of a uniform sub-
strate by a focused laser beam. This solution is used here
within the driving terms of the thermoelastic equations,
which are then solved using techniques similar to those used
by Lax. In ways, this analysis parallels that followed in pho-
tothermal displacement speciroscopy.?

The solutions for laser-induced stresses and strains in a
uniform substrate and in a thin fim overlaying a substrate
are examined in Sec. IL. In Sec. I1I these sciutions are applied
to the problems of defect formation during laser processing
and Raman analysis of laser heating. Conclusions are given
in Sec. IV, The basic thermoelastic relations are presented in
the Appendix.

. ANALYSIS
A, Uniform substrate

A focused laser with beam waist w and power P, is inci-
dent on the surface of a semi-infinite elastic substrate {(z>>0)
with absorption coefficient & and thermal conductivity X,
which are presently assumed to be independent of the tem-
perature 7,. The incident laser intensity is assumed to be
cylindrically symmetric:

HKrz=0)=I,fr/w), (1)
where
fr/w) = exp( — #A/why, (2)

and I, = P,/ {7w?) for TEM,,, mode Gaussian beams.
For steady-state conditions, the heat flow equation is

_a(l— Ry,

VT(rz) = exp{ — az) Ar/wy, (3)

where T is the temperature rise due to the laser
(T, = T+ T, e J» a0d Ry is the surface reflectivity. Lax®
has solved Eq. (3) using the normalized coordinates:
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R=vr/w, Z=z/w,

obtaining

W= ouw, {4)

T(RZW) = ‘ij J(ARYF(A)

Wexp{ ~—-/'LZ) Aexp( — WZ) i,
W2 _ 42
(5)
where
T=aP,(1 — R, /7K, (6)
and F(A) is the Bessel transform of f(R):
P = [T AR ARIR AR, 7
(1]
with
F(A) =lexp( — 4 7), (8)

for the Gaussian beam described by Eqg. (2). At R=¢(,

Z =0, the temperature rise is 7= T, it the imit w> /o
{W - ), where
Toax = T(R=0,Z=0,W= o)
V7 = —
377 Bl =Ry )
Tow 2VmKw

This laser-heated temperature profile leads to thermo-
elastic stresses and strains in the substrate. The Appendix
gives the relations between the induced residual stresses o,
straing €, and displacements « for an isotropic solid. € is the
total strain, which is the sum of the elastic strain € and the
strain from thermal expansion. For diagonal componenis
this amounts to

e=¢4+aT, (10}
while for off-diagonal elements € = €. o' is the coefficient of
thermal expansion.

The relations for stresses and strains in the Appendix
may be combined and then expressed in terms of Youngdahl
stress functions® (3 and ¥ to give

V20 = 1 [ d*W
2-w\ ez
VY =0, (12)

which are Egs. (A6) and (A7) in the Appendix expressed in
the normalized coordinates of Eq. (4). v is Poisson’s ratio.
Equations (A4) and (AS) relate the displacement » and
strain € to §} and ¥, and Egs. (A1) relate the stress o to €.
Because the laser heating is axisymmetric and the material is
isotropic, the solution is most easily expressed in cylindrical
coordinates and is independent of 4.
The solution to the homogeneous Eqg. (12) is

+2(1 +v)w2a’T), (1)

¥ = ﬂaf Jo(ARYexp( — AZ)P(A)YdA, (13)
(]
and the homogeneous solution to Eq. (11) is
Dpom = Q‘O}( Jo(ARYexp( — AZYH(A)YdA, (14)
(4]

where {3, hasbeensetequal to [ (1 + v)/{1 — ) Jwa'T for
later convenience, and P(A)} and H(A) need to be deter-
mined.

8275 J. Appl. Phys,, Vol. 64, No. 11, 1 December 1888

The complete solution to Eg. (11} is

A’ exp( ”' PE/Z;’) d}lv
(W?—1%)?

Zexp( — AZ)

AW?I—A%

=0, — 0 J; Jo{ARYF(A)

f JARYF(L)

— f JlARIP(AYA exp( — AZ)dA,
4” —v (15)
where the second and third terms on the right-hand side are
the particular solutions for the temperature term of Eq.
{11), and the fourth term is the particular solution for the
3°%/3Z7 term.

P{A} and H(A) are determined from the boundary con-
ditions for the stress-free surface, o,(R,Z=0)
=g, (RZ=0)=0. Using the relations between the
stresses and stress functions obtainable from Egs. (Al) and
{AS) in the Appendix, the following conditions are ob-
tained:

W{W?>—34%)

2AH(A ——e L F(A
{ )+A(W2=—/12)2 (4}
+/1de =0, 16
=) (43 (16a)
A 1 o
These are sclved to yield
Py =2 ER =44 gy (7
H(m:—_Af;) F(A), (18)

where F(A1} is the Bessel transform of the laser profile given
by Eq. (7) in general and by Eq. (8) for a Gaussian beam. To
simplify these expressions, the functions 4(A)} and B{A)
have been introduced here, which, along with the function
C(A), are used below in the integral expressions for stresses
and strains. These are defined as

AP — (W4 20 (1 —w) (W — A)?

A(A) = . 19
(4) T EY (19)
A A’ 20

BA) = ——

(A} AT (24)
/:;3
C{A) = (21}

(W+ AW~ A%
[ Despite the close connection between B(A) and C(A), it is
still convenient to use both functions. ]

in terms of F{A) the stress functions are then

Q=0 j.}'@(mmm FACL)expl — AZ) — B(A)

Xexp( — WZ) — C(AYZexp( — AZ) dA, (22)
w20, [T LRI
o A?
X{B(A) — A{A) Jexp({ — AZ)dA. {23)

Using the relations in the Appendix, expressions for the
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TABLE 1. Integral expressions for stresses, total sirains, and displacements.

Stresses

7, = —ay f "R FO[(2E - atres( ~ 42) - 2
(J

)b‘z

BlAyexp( — WZ)y — C{AYZ exp( — ziZ)]dx{

+a, f i%glz«"m [A(A)exp( — AZ) — B(A)exp( — WZ) — C(A)Z exp( — AZ) |dA

agazaof JO(ZR}FM)HA(M+B(/1)(E—~%§/)}exp(—»i2)+ -
(3] L

2 2
¥4 payenp( — WZ)}d/l

— o f :"—%I-‘-l P A(R)exp( — AZ) — B(A)exp( — WE) — CGNZ exp( ~ AZ) 1dA

o, =a f " IARY B [exp( — AZ) — exp{ — WZ)] — C(A) Z exp( — AZ) YA
Q

g, = — T Jm JK(AR)F(Z)(%-VB(,%){exp( ~AZ) ~ expl — WZ}] — C{AYZ exp{ — ,{Z))d/i
i

Total strains

€, = — e(,Jm (,z,(xx) - i%‘il)pmumexp( —AZ) — BUAYexp( — WZ) — C(AYZ expl — AZ)1dA
(]

= — & ﬁ ;’Li%’i‘lﬁm LA )exp( — AZ) — B(A)expl ~ W2} — CLAYZ exp( — AZ}1dA

ea =5 | HRFW|(BE B ~ 4t )exp( —22) — T Bbexp( ~ W2 ~ COZ expl ~ 2l

e = —2e, j ) Jg(iiR)F(A)(%{ B(A)[expl — AZ) — exp( — WZ)] — CLZ exp( — AZ))J/I
0

Displacements

= — we},J.x i‘—“%&- FO LA Yerp( — AZ) —~ BUAYexp( — WZ) — CLAYZ exp( — AZ) 1dA
(s}

8, = — we, r ﬁ’.(_%’.‘i)_ﬁ(z){{sw(i + % - A(/&)]exp( i) — %’B(;.)exp( —WZ) — CZ exp(,{z>}d,1
Q)

stresses and strains are derived easily and are tabulated in
Table I in terms of g, and €, respectively, where
£, 1+4v2aW

0o=—5 = —
173 —w N

Tans (24)

€0 (25)

Tn =
¢ 14+ v

and £ is Young’s modulus.

As shown by Lax,® the highest temperature rise for
Gaussian beam heating is attained at R =0, Z=0, and is
greatest for Wo . 7, =T(R=0,Z=0W= ), as
given in Eq. (9), is a useful reference for normalizing tem-
perature rises for R #0, Z 50, and finite W.

Similarly, the maximum stresses and strains occur at
R =0, Z =0, and again these are largest as W— o. From
Table L, for W— oo,

0 (R =02 =0) = 04y (00) = s = — - Ty,
(28)
where
Cax = — {1 — ) %00.
Also
EL{R=0Z=0)=¢,, = (1 +)a'T,., (273)
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€ ;
Err(R = G,Z = 0) = 666(050) = “E;’Eif’ = "'('Ef—g“f'z’a,Tmax’
- (27b)

where €., = (1 —v)(J7/2W)¢, Note that €, (R =0,
Zy=¢€,4{R=0, Z}, but €,.F#¢,, away from the axis of
symmetry.

Using Eq. (10), the elastic strains at the origin in the
limit - oo are

€, (0,0) =va' T, (28a)

velor (28b)

€, (0,0) = €4, (0,0) =

The expressions for stresses and strains in Table [ have
been integrated for R and/cr Z% 1 (r and/or z> w) in the
limit W — oo, and are presenited in Table 1. For comparison,

note that the temperature rise decays as 1//7 + 27 for large
7 and/or 2.° The rr and 8¢ siress components and the three
diagonal total strain elements all decrease as the inverse of
the characteristic distance from the origin, although only ¢€,,
decreases in the simple manner of the temperature rise. Fur-
thermore, the rr and 84 components are related by

z

€or 8o

and

Weish, Tuchman, and Herman 6276



TABLE 1L Limiting expressions for stresses and strains for »> w and/or
zywin the limit = ow— «.

Stresses
&, a—(\/?——k?_z) Fenax
V?T
&, e ——(\}?';—z:rmz) Fmax
»= J:’f 7 7 7
3 LU22 3 SZz 20m&x
Gy = — -3 P SNE7L 12 I TZ) =
T—v @ \NFA D5 P+ [
- 3w z( 2 72 + 5z )Zamux
i t=-va r \(ﬁ+z2)”2 (F+2)2 0 (P42 J7
Total strains
Epp = 4.,_—’ _(\J(P"";‘—Z) Eones
\/ VT
w r- €nax
Egg ='_(V -—Z)
eg i2 Vﬁ
w 6 1A%
522:; Ay 1;__
N +2 N7
§ wz 2 72 57

Eml'{x
== TTC v;i;((rl TR Fine T (rz+zl“”2)

z

VP +Z

Also, €., = €,, + €45 In fact, this relation is true for all »and
zinthe W— o limit. ¢, 0,,, and €, are much smaller than
these other components because the absorption coefficient o
is very large in this assumed limit. They also decrease much
more rapidly with the characteristic distance from the ori-
gin, as the inverse of the third power.

The solutions represented by Egs. {22} and {(23), and
Tables I and II assume that the laser heating parameters a,
R, and K used in Eq. (3), and the thermoelastic parameters
v, o, and Ein Egs. (11) and (12), and the Appendix, are all
independent of temperature and strain. This is usually a
good approximation for the thermoelastic parameters. For
example, in silicon C,,, C,,, and C,, (related to v and E in
the Appendix) vary by only ~10% from 7T = 300-1690
K.** They are also fairly independent of strain in the regimes
of interest.”! Furthermore, changes in the coefficients of
thermal expansion a' are usually small.’? For example, they
vary by only about - 20% in silicon, sapphire, and fused
silica within the temperature range of interest.

While the surface reflectivity R, also usuvally varies
slowly with temperature, the other laser heating parameters
more often vary fairly strongly with temperature. The ab-
sorption coefficient « varies rapidly with 7, for many mate-
rials, including silicon.’® However, the sensitive parameter
of interest in the analysis is not o but W= aqw. When W 1,
the temperature profile is independent of . For WS 1, the
variations in o (7, ) may be of significance. Variations of the
thermal conductivity K with temperature may be large and
can affect 7, and therefore also o and ¢, quite strongly. For
example, in silicon X decreases from 1.5 tc 0,2 W/cm degree
from 7, = 300-1690 K."*

Teg = e
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Lax” has shown that the temperature rise profile given
by Eq. (5) (which assumes constant thermal conductivity)
is in fact the solution for the Kirchoff-transformed tempera-
ture © in cases where the thermal conductivity is tempera-
ture dependent. The temperature rise 7 is then obtained
from © by an inverse Kirchoff transformation. Unfortunate-
iy, there is no longer an obvious analytic solution to the ther-
moelastic equations {Egs. (11} and {12} ] when 7'is substi-
tuted after the transformation if the thermal conductivity
depends on temperature. Still, in cases with temperature-
dependent thermal conductivity an approximate solution for
stresses and strains may be obtained by solving for T exactly
using K( 7, ), and then finding constant parameters K and
(and also P, w, etc.) which will nearly simulate the actual
temperature profile. To first order, this can be done by ad-
justing 2, and X to match the maximum temperature rise at
r =0, z =0, which amcunts to using 7, , defined in Eq.
(9), as a parameter. The thermoelastic equations can then be
solved as described previously. This approach is adopted
here in the examptles that follow.

The analytic stress and strain expressions in Table I are
now examined for a Gaussian beam. Thermoelastic con-
stants for silicon are used in these examples because of the
importance of this semiconductor in microelectronics and
the frequent use of lasers in processing silicon. (o
= 40X 107%/°C, v =042, E=1.13x10" dyn/cm?.'?)
Since this analysis assumes an isotropic solid, while silicon
has higher order, cubic symmetry, application to silicon is
only approximately correct. Reference 2 estimates that the
accuracy of results from isctropic thermoelastic analysis to
silicon is better than 20%. Assumption of cubic symmetry in
thermoelastic analysis makes solution significantly more dif-
ficult.

Using Eqgs. {9), (26), and (27), the maximum stresses
and strains induced in beating silicon o T=7,,,
= 1400°C (7, = 1420°C=T_, ) can be found in the
W = aw- «o limit. The maximum residual stress is o,
=G, = 04 = — 3.2X 10° dyn/em®. The maximum total
strains are €, = 7.9X107% and €, =€, = 40X 1077,
while the maximum elastic strains are €, = 2.3 X 107? and
€, = €g9 = — 1.6X 107>, Whereas the total strain is posi-
tive for all diagonal components, only the elastic strain €,, is
positive, while €,, and &,, are negative.

The expressions for stresses and total strains in Table §
have been integrated numerically for a beam radius of 1 gem
and W = 15, and are displayed in Figs. 2 and 3. These calcu-
lations approximate the W— oo limit. P,/X is chosen so that
T nax €quals 1400 °C. For reference, Fig. 1(a) plots T(r,z) vs
r at different depths z. 7{r =0,z = 0) = 1300 °C is some-
what less than 7. because # is only 13. These curves are
similar to those given by Lax.® Using Eq. (10} and the data
from Figs. 1{a) and 3, the elastic strains were computed, and
are plotted in Fig. 4.

Figure 2 shows that the stress components o,, and g4,
are the largest. For # = 15 they peakat r=0andz=0toa
value slightly smaller than the corresponding stress o, in
the W— o limit. Both stresses decrease monotonically with
increasing r and z, although o,, does so much more slowly
than does o, for increasing ». This is expected from the

Welsh, Tuchman, and Herman 6277
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FIG. 1. Temperature rise { T} profiles vs rat z =0, 1,2, 3, and 4 m, calcu-

iated from Eq. (5) using a spot size w=1 um and 7, = 1400 K: (s}

We=152and (b) W= 1.

STRESS AR (10 ® dynes/cm 2) {microns}

Of z=0
] z=q
~40 =2
~45 z=3
~20 =4
-25¢ -
b
e Y? 1.0 2.0 3.0 4.0
r {microns)

STRESS ZZ (108 dynes/cm 2} {microns}
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FIG. 2. Residual stresses vs rfor z = (-4 m in silicon, calculated from Table fusing w = 1 pmand 7,

STRESS T7 (408 dynes/ca 2)

integrated expressions in Table 1L o,, is smaller by about
two orders of magnitude, peaking on axis at a depth of about
0.5 pm {not shown). o,, is also smaller than o,, and oy, by
about two orders of magnitude, and its magnitude peaks 0.8
zm off axis at 2 depth of about 0.1 um. Near the axis, o,, is
negative from the surface down to a depth of 0.6 um, about
zera at z = (.6 ym, and positive deeper within the substrate.
Because of the stated boundary conditioss, both ¢, and o,
are zero on the surface.

The total strains are displayed in Fig. 3. All three diag-
onal components are comparable in magnitude in this case.
As predicted by the expressions given in Table II, the three
strains decrease monotonically with » and z, but ¢,, (and
alsc €,, } decreases much more slowly with » than does €,,, in
contrast to the radial dependence of the corresponding stress
components o, and 0,,. Again, these three major strain
components peak at r =0 and z =0 {o values somewhat
smaller than those in the W— s« limit. €, is two orders of
magnitude smaller than the diagonal components and varies
as does o,,, which is expected since they are proportional to
each other [Eq. (Ald)].

Atz = 0and z = 0 the elastic strains for ¥ = 15, shown
in Fig. 4, have nearly the same values as for the #— oo limit,
with €,, positive and €,, and &,, both negative. However, in
contrast to the total strain, the magnitude of €,, reaches a
maximu near a radius of r = 1.4 gem at the surface (z = 0).
Also, &,, changes sign to become positive at about the same
radial distance for z = 0. Qualitatively similar behavior is
observed below the surface (z>0) {(not shown).

{microns)

z=0
“ged
-
S
:_;:E
®es 1D 28 30 40
r {sicrons)

STRESS RAZ (109 dynes/em 2) {microns)
$.05 =0
8.00} ¢ za1

-0.05| g

-0.10 : 533

-0.45} z=3

o.20f oy

5. 25 L

2.6 3.0 4.0

r fmicrons}

8.0 1.0

= 400K for W= 15:(a) o,,, (b} 0y, (c) 0,,, and

max

{d) o,.. In (d) z= 0.1 um data are plotted, in addition to the z =0, 1, 2, 3, and 4 um data plotted for {a)-(c}.

6278 J. Appl. Phys., Vol. 64, No. 11, 1 December 1888

Welsh, Tuchman, and Herman 6278
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r 2=3 Z=3
26+ - - 26 - -
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FIG. 3. Total straing vs rfor z = 0-4 um in silicon calculated from Table Jusingw = lgmand T, = 1400 K for W= 15: (8} ¢,,, (b) €4, (c) €, and (&}
€,,. The dependence of €,, vs 7 at z = 0.1 ym may be determined from that of o,, in Fig. 2(d) since €,, and o, are proportional.

Analogous calculations were performed for the =1
case in which the spot size w and the absorpticn depth 1/a
are equal (Figs. 5 and 6). For the same parameter 7,

face (z>1 pm), the W =1 and 15 profiles are nearly the
same. This agrees with the results in Ref 6.
For W =1, o,, and g, are similar, although somewhat

= 1400 K, the surface is significantly cooler with this condi-
tion vis-a-vis the large # limit, as shown in Fig. 1(b); at
r= 0 and z = 0 the temperature rise is 760 K, significantly
smaller than the 1300-K value for 8 = 15. Beneath the sur-

ELASTIC STRAINS (104
30

.4
20[- ?ﬁ:
sof A
of
“to} _ e
20 v > +

r {microns)

FIG. 4. Elastic strains (€,,, €,,, €4, ) vs rinsilicon at the surface (2 = Oum)
computed from Figs. 1 and 3.
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smaller, than for W = 15, except at the surface where they
dip to nearly zero at r = 0 and z = 0 (Fig. §5). Now o, and
o,, are relatively much larger than before, with o,, on the
same order of magnitude and o,,, only one order smaller
than o,, and 0.

The diagonal components of the total strain are gualita-
tively the same for W =1 and 15 (Fig. 6). For W= 1, ¢,,
and €44 are slightly smaller, while €, at the surface is signifi-
cantly smalier. Also, €., is now only one order of magnitude
smaller than the diagonal components.

B. Thin fitm: on a substrate

The above solution for thermoelastic stresses and strains
can be extended to focused laser heating of a thin filmon a
substrate. Formally, this may be accomplished analytically
by extending the Lax treatment of laser heating, as done by
Calder and Sue’® and Yamada, Nambu, and Yamamoto.'®
Then the thermoelastic equations can be solved in each of the
two media with the boundary conditions that the stresses o,
and o,, are zero at the gas/film interface and the strains ¢,,
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and €4, are continuous from the subsirate to the film. In the
substrate, the general solution for the stress functions would
be similar to Egs. (13) and (15). Within the film the solu-
tion would be similar; however, expressions with exponen-
tial terms in these equations would be replaced by similar
expressions with cosh and sinh terms, as in Ref. 8.

Instead of proceeding with this solution, which is com-
plex for the general problem, only the important limiting
case of a very thin film on an elastic substrate is considered
here. The film is assumed to be thin enough that it does not
perturb the siresses and strains in the substrate. This as-
sumption is commonly made in analyzing stresses that are
formed as a result of thin-film processing. Eguation (5) still
describes the temperature profile in the subsirate in two
limiting regimes. if only the thin film absorbs the laser, as for
Si films on sapphire or 310, substrates, Eqg. (5) may be
used in the W limit with P, replaced by
Py[1 — exp( — @, d) |, where ay,,, is the absorption coef-
ficient of the film with thickness d ( €w). In essence, laser
absorption in the film is treated as absorption at the substrate
surface with @ yuraee — o0 If only the substrate absorbs the
laser, as for Si0, films on Si, Eq. (5) is used unchanged. In
both cases, thermal conduction in the thin film is assumed to
be negligible compared to that through the substrate. Also,
laser reflectivity at the gas/film and film/substrate inter-
faces, possibly including multiple reflections, must be con-
sidered properly. In either case, siresses and strains in the
substrate would be determined from 7 using Egs. (22) and
{23) as above.

If both the film and subsirate absorb the laser {and
@S 13, Egs. (11) and (12) can be solved individually
for thermoelastic effects that develop from 7 due to either
heating source. However, Py exp( — a4, &) (and not 2,) is
used for the laser power in the term describing laser absorp-
tion within the substrate to account for laser attenuation in
the film. The resuiting & and ¢ are then obtained by adding
the individual stresses and strains resulting from heating the
film or the substrate. This approach assumes the linearity of
the laser heating and thermoeiasticity equations, which is
true only if all material parameters are independent of tem-
perature and strain.

It is now assumed that the residual stresses o* and total
strains € in the substrate have been obtained as outlined
above. Built-in strains and stresses at the film/substrate in-
terface are assumed to be zero with no laser irradiation
(7' = 0). Then the continuity of planar total strains gives the
total strains in the film €”;

6,{;(}‘) :é,(r,z:()), (29&)
by (1) = €y (P2 =0), {29b)
where from now on the actual coordinates » and z will be
used instead of the normalized coordinates R and Z. Since
the film is very thin, all components of ¢/ do not vary with z
within the film. Using Eq. (10), the elastic strains in the thin

film, which describe the local deviation from thermal equi-
librium {for unstressed film material), are

En=€(rz=0)—a T(rz=0), (302)
Elo(r) =€ (rz=0) —ad P T(rz=0), (30b)
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where a'/7 is the coefficient of thermal expansion in the
film.

Film strain in the z direction is obtained by setting
ol (ry =0in Eq. (Alc), giving

. () ; ;
é‘zz(r) :m {6”(?’) +Egg(.r)}
1-%“1/(!) ) _
ma T(?’,Z-—»O), (31)
_ e . _
EL(r) = [EL(n + EL (D], (323
pi)— |
and wvsing Egs. (30),
. ) )
eL(n =——r|e,(nz=0) + €, (rnz=0)]
-1
27
-—7;;—:—;6! T(f,Z-—O)‘ (33)

In the W— oo limit, the elastic strain in the ilm at r =0 is
obtained by using Egs. (27):

E(r=0)=¢8L(r=0)

KE
= (___‘__1 2+_. i a a'(f)) Tmax! {34a)

2,1,(;‘)
gy = ——
€L (r=20) NVE R

(%3]
> (}-/m-_zﬂ (ZIU) it a,(f)> Tmax . (34b)

These equations for thin-film elastic strain at the origin
during focused laser heating are evaluated now for two ex-
amples with 7, = 400K (W= o). (The buili-in
strains are still assumed to be zero.) For silicon films on
sapphire, €, = €p = +30x107° and .,

= — 43X 1074 using’ = 8.6 X107%/ Candv= —0.02
for the sapphire substrate.’” In this case, each elastic strain is
of opposite sign from the respective component for a silicon
substrate {or for a 8i film on 8i). These elastic strains are also
much smatler in magnitude than those in silicon because of
the near cancellation of the two terms in brackets in Egs.
(34}. This near canceliation occurs whether coefficients of
thermal expansion that have been averaged over tempera-
ture are used, as is done here, or coefficients at any given
temperature from 300 to 1690 K are employed. For silicon
thin films on fused silica {Si0,), €, = &4 = — 5.1 X107
and €, = + 75X 1077, using o' =535X1077/°C and
v = 0.17 for fused silica.’” These elastic strains are signifi-
cantly larger than those in silicon substrates and have the
same sign. The 8i on Si0, case is not very sensitive to the
variations of o’ with temperature.

Murakami'” has shown that the stress and strain distri-
buticns in large-diameter, thin-disk microstructures are
quite uniform away from the disk edges. This suggests that
this thin-film analysis can be extended to regions near the
center of disk-type microstructures on subsirates.
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B IMPLICATIONS OF STRESSES AND STRAINS IR
LOCALIZED LASER HEATING

A. Stress-induced defect formation

Residual stresses induced during laser heating can pro-
duce defects that remain in the material after processing. For
example, in crystaliine silicon, stress in excess of the yield
stress can induce dislocations on the {111} slip planes in the
{110} slip directions.'® If these dislocations are formed be-
cause of laser heating, then after heating they wilil be frozen.
This leads to large built-in stresses near the defect, which can
affect subsequent performance in microelectronics applica-
tions. Usually, these defects will not be annealed away dur-
ing the later phases of laser heating. Dislocations formed in
¢-81 by laser-heating-induced stresses are analyzed here as a
specific example.

Consider (100) Si with the x, y, and z axes chosen to be

the {100}, [010], and [001] directions, respectively. Since
o, = 0 (and also g,, = 0} by symmetry, and since 7, i8 so
small that it is effectively zero, the off-diagonal stresses @,
=g, = 0. In ¢-Si there are three {110) slip directions on
each of the four {111} slip planes. With these conditions
there are five distinct ways to project stresses along the 12
combinations of slip directions on slip planes.® §; are the
magnitudes of these projected stresses:

Si = _"L sa.xx - Uyy!’
11 <
SZ,J = fo-xx + Cop — crzz!? (33)
R
i
S4,5 =? iayy i axy — O'zzl'

Dislocations are assumed to form at any position 7, 8, and z
for which any of these projected stresses exceed the yield
stress og.

These expressions can be related to the results of Sec. IE
by converting the stresses in Table I to Cartesian coordi-
nates:

U —
o, =—— T %5 T~ Tu cos 26,
2
o, — 0O
Oy = 2 5in 26,
2
O + O o, —0
o,, = — T % cos 28,
2
Oz = Tzt (36)
The projected stresses are then
Sl = _}—- I(orr - a&?)cos’ 29 S’
S, = | % + %00
J 2
G, — 0
— 0, +—Zsin (29 TL”—E)l , (3D
7 i

where m = (0,1,2, and 3 correspond to 8, S5, 5, and S,
respectively.
It is important to determine the maximum projected
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stress $ ™ for comparison to the yield stress. For example,
on the r = { symmetry axis, 7,, = Oy, and so

a, T,
S;r:asx(rza’gyz):_j;:_ _.,'_r_j:__.@_—.g'zz s

V6 2
while 8, == 0. For =0 and z = 0 in the limit W~ «, o,
= Oy = O, and o,, = 0 (because of the boundary condi-

max

tion imposed at z = 0), and s0 7% = 0,,,,, /6 in this limit-
ing case. .
More generally, .S, reaches a maximum value of

STN0.2) = — (3, — Tog) (38)
J

at the four angles @ = m'{#7/2) (m' = 0-3) foreach rand z,
S, s coliectively reach maxima of

i (lgrr + Tyo lO.rr )
(39}

SENrb8z) =— —o:,,! + f——
e /6 2 l 7

at the eight angles 8 = 7/8 + (m"7/4) (m” = 0-T).

ST and §T5" are displayed in Fig. 7for W= 15,as a
function of  for several values of z from 0 to 4 pm, using the
plots of stress in Fig. 2. The maximum projected stress oc-
curs on the surface for the §,_; slip plane/direction combina-
tions. Although this projected stress actually peaks near 0.8
pm, it is still quite flat from the axis to the radius. The value

1841 (108 dynes/cm @) {microns)
° z=0
s ) zmg
A 2=
! 2=3
& eeemmTTTTTITRES =4
i LT e
g ladals S e S s e

8.8 1.8 4.0 3.0 4.0
r {micrens)

fedf, ... 158 (109 gynes/ca ) {microns}
s z=0

1 zmi
Z=g

=3

Zuad

S WM A~ @ W@

FIG. 7. Magnitude of maximum stresses in sikicon projected on the {111}
slip planes in the {110} directions using stresses from Fig. 2: {a) ST and
(b) S75.
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on axis is slightly smaller than the o,,,,, /Y6 value determined
above the W— « limit, because W = 15 in the numerical
integration. The peak of 5, occurs on the surface about 1.8
zm from the axis, where it is still smaller than the S, 5 pro-
jected stress maxima. Therefore, the regions of maximum
projected stress are at the surface, along the eight rays pro-
jecting from the origin to r~ I um, which correspond to the
eight angles of S 7%,

The yield stress o, of several materials depend on the
rate of strain as’®

ai‘é!)!/‘n (
=C, (2l
e "( o ) TPGLT

where U is the activation energy for glide movement, and C,
and n are constants. For Si, U=2.3 eV, n=2.1, and
Cy = LT X 10° (dyn/cm?)s"/".'® The large ¥ limit for the
projected stress, o,,,, /6, will be used to ascertain the ex-
perimental conditions for which the maximum projected
stress exceeds this yleld stress during laser heating by a scan-
ning Gaussian beam. If the scan speed of the laser is v, the
dwell time of the laser over a distance of the spot size wis w/
v. Therefore the elastic strain rate at the origin is J [€]/d¢
=~ {v/w) €. After projecting the elastic strain at the origin
fasin Bgs. (37) ] and using Eq. (40), the range of v/w where
the maximum projected stress exceeds the yield stressis then
obtained:

) ()
—g —_— exp| ———1.
w o v+ 1\, 216 kT,

(41}

The minimum permissable scanning speed with no dis-
location formation is tabulated in Table III, using the pa-
rameters for silicon and spot size of w = 1 gm, for various
values of 7, . At relatively low peak laser-heated tempera-

), (40)

i
P +G(E,, +E) — 4 272,
det ngxy pgyy + q(gxx + g;zz) - Z
2re,, 27€,,

with 4 = w® — 0}, where w, is the unperturbed frequency at
the given temperature 7, and @ is the phonon frequency
perturbed by the elastic strains €.

If A < and @3, as is usually true, then w=a, + (A /
2604). p, g, and 7 have been measured for ¢-8i at room tem-

TABLE III Minimum scan velocity with no dislocation formation in sili-
con for different maximum laser-heated temperatures, with w = | yumin the
limit W— .

Toa (B} [T, (K3 Bosin, {4m2/8}

600 18901 0.0031
800 11090} 1.0

1000 £1290] 60

1200 [ 14901 1200 (5.2 mm/s)
1400 £ 1690} 12000 (12 mm/s)
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tures (7, < 1090 K), scan speeds can be guite slow (<1 zm/
s) without inducing defects. At higher temperatures, dislo-
cations will form at these slow speeds, according to this mod-
el. When the laser heats the spots nearly to melting, defects
will form at speeds slower than about 10 mm/s. This speed
corresponds to the fastest demonstrated speeds for direct
taser writing.” Conseguently, this analysis suggests that sur-
face damage may indeed occur in many operating regimes of
laser writing on silicon substrates.

8. Straln effects on the Raman spectrum

Raman analysis can probe laser heating by examining
the temperature-dependent phonon frequency shift, phonon
linewidth, and/or scattering infensity. Of these three meth-
ods, measurement of frequency shifts and linewidths are
usually the most relisble probes of temperature.’* However,
if the temperature varies significantly within the beam spot
size of the Raman probe laser, the Raman spectrum willbe a
spatially averaged profile, which must be interpreted with
care.'”

Strains induced in laser heating will also perturb the
Raman spectrum. The thermal component of the total strain
is already included in the temperature dependence of the
phonon frequency. Only the effect of deviations from ther-
mal equilibrium of unstressed material, i.e., due to elastic
strains &, need therefore be considered separately in Raman
analysis. The effect of strain in the Raman analysis of laser-
heated sificon will be addressed here.

In ¢-8i the k = O optical phonon near 520 cm ™' is triply
degenerate. This degeneracy is at least partly lifted by non-
hydrostatic stress. Following the treatment of Anastassakis
et al.,”® the phonon frequencies for this cubic material may
be obtained from

2FE

Xz

2r€ = O,

vz
P?zz + q(gx.x -+ gyy) - Z

(42)

i
perature: p= — 1.43X10%/s, g = — 1.89X 10%%/5 and
= —0.59x 10?/s2%

The relations between the elastic strains derived here in
cylindrical coordinates (Table 1) and those in Cartesian co-
ordinates are simplified because the temperature profile is
cylindrically symmetric and therefore €, = €4, = 0. Alsg,
the numerical integration presented in Sec. IT has shown that
€,, €€,,, 4, and €,,. Therefore, it is reasonable to set
€., = 0. This leads to

€. = (c0s? B)E,, + (sin® 8)E,,,

€, =sin fcos (€, — &),

€, = (sin’ AE, + (cos® §)E,,,

2z = €225 (433

m

with €, = &, = 0. It should be remembered that since the
thermoelastic analysis has assumed material isotropy and
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silicon has cubic symmetry, this treatment is only approxi-
mate.

On axis (r =0}, €,, = €, and s0 §,, = €,,, which is
expected from symmetry; also €,, = 0. Therefore, on axis
the triplet breaks up into a singlet and doublet with frequen-
cies @, and w,, respectively. From Eq. (42),

w,(r=02) =w, + 3—1!— {2¢€,, + PE,,), (44z)

20

wa(r=02) = o, +

1 - _
. (44
To [+ g€, +¢€.]. (44b)

More generally (r£0), symmetry is lost totally and the
triplet splits into three singlets: @, @,, and w,, with @, corre-
sponding to the singlet @, in the above equation:

1
0(7,6,2) = oy +— [q(&, + &) +PE. 1, (452)
2w,
@y3(1,6,2) = w4+ {P :r g (€, + €0} + g€,
Wg 2
_ 2
+ (§, — é(,(,){(" > g 005(26))
1/2
+ {rsin(w)]ﬂ } . (45b)

In Eq. (43} thereis an explicit dependence on r and z in
the € terms, and an implicit dependence through the tem-
perature dependence in w, (and also through the possible
temperature dependence of p, ¢, and 7).

in addition to the variation of @, , ; with r and z, which
would be apparent during probing when induced strains are

BAMAN SHIFT (wi) (i/cm) imicrons)
0.78 2a
8.86 - seod
§.50 - o e
0.40k Rons
¢.30 r 58?;
0.28} 2l
8,40 :

600 s To 2B 38 48
r (microns!

RAMAN SHIFT {«2] ({i/cmi fmicrons)
6.28; g
g.20¢r 2
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1
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A
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=3.08 ;
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fairly uniform, there may be averaging effects (strain-in-
duced broadening) when the probed region is not smali com-
pared to the spatial variations in €. This is analogous to the
possible spatial averaging in the temperature-induced Ra-
man shift. For w, ; the Raman shift depends also on 6, vary-
ing as 20. In backscattering studies on {100)Si, the @ (w,}
Raman peak can be isolated by proper selection of polariza-
tion, and so this last spectral complication can be avoided.

For T, = 1400 K (7T, = 1690 K} the Raman shift
modified by only temperature effects is about 480 cm ~!,%
downshified by about 40 cm ™! from the shift at room tem-
perature. For =0 and z=0 in the ¥ — o limit with
T(r=0z=0)=T7T,,, = 1400 K, the singlet w, is upshift-
ed by 0.8 ecm ™', while the doublet w, ; is upshifted by only
0.3 cm™! relative to 480 cm™'. The local silicon optical
phonon triplet frequencies for 7, = 1400 K and W= 15,
are displayed in Fig. 8 as a function of rand z at 8 = 0. The
@, ; phonon frequencies for 6 = 7/4 (not shown) are near
the frequencies for 4 = 0. Exclusion of these elastic strain
effects in the Raman measurement of temperature will lead
to an underestimate of the temperature by only about 35 K,
when the silicon is laser heated near 1600 K.

The values for the peak elastic-sirain-induced Raman
shifts in (100} silicon during Gaussian beam heating calcu-
lated here are smaller by roughly a factor of 5 vis-d-vis those
given for more uniform laser heating in Refs. 4 and 5, for
equal laser-heated peak temperatures. The analysis in these
cited studies assumed that the laser induces a uniform two-
dimensional compressive stress and may not have taken into
account the effect of the zz component of elastic strain. €,, is

RAMAN SHIFT (w3} (i/cm {microns)
9.30 Z“@
@.25’ Z“i
9.20 A
.48 23

.48 - =
6.2 Z=ed
§.08 —

¢ T 20 38 44

e {microns}

F1G. 8. Phonon frequency shifts in silicon due to elastic strain vs » for differ-
ent z, using Bq. (45) with § = 0: (a) w,, (b} «,, and (<) @, as induced by
the temperature rise profile in Fig. 1(a). The elastic strains were derived
from Figs. 1, 3, and 4.
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extremely important in Raman analysis. Exclusion of this zz
component in Egs. (44} and (45) leads to sigaificantly larg-
er strain-induced Raman shifts than when it is included
properly.

The phonon shifts due to elastic strains induced during

laser heating of thin films on substrates are now evaluated
for the two cases examined in Sec. I B. As before, T,
= 1400 K and W = . For silicon films on sapphire, at
r =0 and z = 0 the singlet o, is downshifted by ¢.15em ™!
and @, 5 is downshifted by 0.05 cm ™', relative t0 480 cm ™.
For silicon: thin films on fused silica (Si0,), @, and w,;
increase by 2.6 and 0.9 cm !, respectively. The effect of elas-
tic strain is to increase the phonon frequencies for both sili-
con substrates and Si thin films on SiQ,, while it decreases
the Raman shifts for a Si thin film atop a sapphire substrate.
The shifts are quite small in magnitude for silicon on sap-
phire because of the smail elastic strains induced in laser
heating, as discussed in Sec. II B. In contrast, the magni-
tudes of the Raman shifts for silicon on Si0, are significantly
larger than those for a Si substrate, and they are farge enough
to affect Raman microprobe determination of surface tem-
perature significantly, leading to an underestimate of T by
about 115K for T, = 1400 K. Including built-in strains at
the thin-film/substrate interface will modify these results.

Within the Raman probed volume, uniform elastic
strains will shift the central frequency of the Raman profile,
while strain nonuniformities will broaden the line shape.
Strain can also change the Raman scattering intensity. Cal-
culations by Wendel®® have shown that in silicon, strain can
increase the Raman scattering probability, particuiarly as
the probe laser frequency approaches the direct band-gap
frequency. Nonhydrostatic stresses can also alter the Raman
polarization selection rules, by changing the local symmetry
of the lattice.***

tV. CONCLUDING REMARKS

This paper has presented analytic expressions which are
useful in analyzing the physical conditions during laser pro-
cessing of materials, as in direct laser writing and laser an-
nealing. With minor modifications this study can be used to
investigate thermoclastic effects during heating by other
sources, such as electron beams, Though the expressions giv-
en here are exact only for the stated conditions, e.g., tem-
perature-independent parameters, isotropy, etc., they still
provide very good estimates for more complicated experi-
mental conditions.

Most of the results derived here are strictly valid only in
the early stages of pyrolytic direct laser writing. For exam-
ple, during laser deposition the temperature profile may
change with time because the deposit may modify the optical
and thermal conditions. Also, in some cases the stresses and
strains occurring within the deposit during writing may
prove to be more important in subsequent applications than
those induced in the substrate; only the stresses and strains
induced in the substrate, which may have a thin-film over-
layer, were considered here. Furthermore, after deposition
“built-in” stresses and strains may form at the deposit/sub-
strate interface upon cocling, due to the different coefficients
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of thermal expansion in the deposit and substrate. These ef-
fects were not considered in this study.

The two examples discussed in Sec. I do, however,
demonstrate the importance of considering thermoelastic ef-
fects in optical processing and diagnostics. Although the
model used here for dislocation formation in silicon is only
approximate, it does suggest that the stresses induced during
laser processing may lead to undesirable consequences in
applications using the processed material. Some optical
properties of materials are indeed quite sensitive to strain. In
Raman analysis of some silicon-based structures these laser-
induced strains are not very important, as for silicon films on
sapphire, but in some cases, such as silicon thin films on
fused silica, these strains may affect the interpretation of the
Raman data significantly.
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APPENDIX

The stress-strain relations including thermal expansion
in cylindrical-coordinates are®

Ev
P €, € + €,.
(1+V)(1~—2v)( + €gp }
E e o, (Ala)
14+ I—2v
Ev
0 = 6"?‘ 6 622
) Ar o (— 2 (€, + €55 + €.}
E E
-+ Eogo — a'T, Alb
I+ Ty~ ¢ )
Ev
Uzz = érr + € i + 622\
Gz ot
£ zz T E agT; (AIC)
P+ I —2v
Orz :,Ltfrz,' {Ald)
Tp5 = M€y, (Ale)
o = €9, (AL

where E is Young's modulus, v is Poisson’s ratic, g is the
shear modulus, and ' is the coefficient of thermal expan-
sion. o is the residual stress, € is the (total) strain, which is
the sum of elastic and thermal strains, and 7 is the laser-
induced temperature rise. For media with cubic symmetry,
elastic constants are refated to F, v, and p by

Ev
Cp= s
(L+v)(1—2v)
E
Cu—Ch= ,
11 12 1 + v
Cos = .
For the isotropic media considered here
1 E
Coy=—(Cy, —Cp) = pt = —er
= (Cyy 12) =p 201 + v}
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Total strains are defined in terms of total displacements
u, as follows:

ou
= (A2a)
¢ ar
1 au{) u,
= — -, (AZb}
Con r 06 + ¥
Iu
= (AZc)
¢ dz
du Ju
= — , (AZd)
<=3 1%
1 0u, duy Uy
= L L 2z Ale
€ro r 98 o ’ (A2e)
J
ey = Doy L2 (A26)
dz r g8

At equilibrium with no external forces, the stresses are refat-
ed by®

30‘# + L ao’rf? (3017 Ty — Tgg _ O, ( AS&)
or r 96 dz ¥
90, 1 904 0%, 2
=2 = =0, Alb
dr r 98 3z * ;7 ( )
do,, 1 dog, o, i (A3c)

ar r69+&z+r0’z 0

Equations {A3a)~{A3c) are solved by first replacing
the stresses by the strains from Egs. (Ala)~(A1f) and then
expressing the strains in terms of dispiacements, using Egs.
(A2a)-(A2f). One convenient way to proceed is to use
Youngdahl stress functions® £}, ¥, and A in the resulting
modified Egs. (A3). These functions are related to displace-
ments by

ur__agﬁiﬂ’ {Aé?.a)
ar r 98
1 3 JA
= Adb
“o r 08 + ar ¢ )
Z_—:QQL il {Adc)
Jz Jz

Now, assuming an isotropic medium and an axisymmet-
ric temperature profile, the stresses and strains are cylindri-
caily symmetric and ug, €. €4, Go,s Tgy, and A = 0.

Then

_aa

Egp = __3__3;!};, (ASH)
y or
g%y oW
IS e e e AS
== m T (Ase)
2 2
e, =230 9W (AS5d)
drdz  ordz

After some rearrangement and a single integration, the
modified Egs. (A3a) and (A3c) may be expressed in termis
of the {I and W stress functions:
. i ( a2
T2(0-wn\ 82
Vi =0

720

+2(1 +-v)a'T), (A6)
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